

IMPROVEMENT IN PERFORMANCE OF **ANAEROBIC DIGESTION VIA CONDUCTIVE MATERIALS; GRANULAR** ACTIVATED CARBON AND HEMATITE

Inoculum

+

+

+

+

Yasin Odabaş, Yasemin Dilşad Yılmazel Department of Environmental Engineering, Middle East Technical University yasin.odabas@metu.edu.tr, dilsad@metu.edu.tr

Reactor

Blank AD

GAC-20

GAC-40

Conductive material

 (GAC/Fe_2O_3)

GAC (20 g/L)

GAC (40 g/L)

ООТÜ МЕТU

Conventional anaerobic digestion (AD) is a widely used process for the treatment of wastes and to generate methane from wastes. Low methane yield, low organic removal and lower rate are drawbacks for AD systems^{1,2}.

- Conductive material (CM) can improve performance of AD by direct interspecies electron transfer (DIET) \triangleright
- Lag time can be reduced by CM \triangleright

Aim of the Study

In this study, we aimed to increase the performance of AD for cattle manure digestion by supplementation of two different conductive material, hematite (Fe_2O_3) and granular activated carbon (GAC) and to investigate the effect of CM amount.

Methodology

Inoculum: Anaerobic digester seed

Substrate: Cattle manure from a biogas plant

Diffferent GAC concentration Table 1. Inoculum and sustrate characterization

- 20 g/L GAC ≻
- 40 g/L GAC
- 60 g/L GAC ۶

20 mM Fe

50 mM Fe

Parameter Inoculum Sushtrate рΗ 7.5 7.8 Total solid (%) 3.34 ± 0.01 12.18 ± 0.06 Volatile solid (%) 1.76 ± 0.01 9.45 ± 0.05 Volatile solid/Total solid Different Fe₂O₃ concentration 52.68 ± 0.39 77.55 ± 0.04 Chemical oxygen demand (mg COD/L) 30.027 ± 61 151.743 ± 6446 Phosphorus (mg PO4/L) 35.3 ± 1.6 _ Ammonia (mg NH3-N/L) 1897 ± 117

Results

- 30% higher cumulative CH4 production in all GAC reactor than conventional AD reactor
- 21% higher CH4 yield (ml CH4/g VSremoved) in all GAC reactor than conventional AD reactor
- > 11% higher cumulative CH4 production in Fe-50 reactor than conventional AD reactor
- 17% decrease in lag time in GAC-40 with respect to conventional AD reactor
- 1.48 times higher CH4 production rate in GAC-60 reactor and 1.33 times higher CH4 production rate in Fe-50 reactor

Conclusions

- Application of conductive material (GAC and Fe2O3) enhanced CH4 production with respect to conventional AD reactor
- Lag time for the digestion decreased by the supplementation of conductive material
- No significant difference among GAC reactors in cumulative production
- Conductive material is a promising approach to improve the performance of conventional AD process

References

Johnravindar, D., Liang, B., Fu, R., Luo, G., Meruvu, H., Yang, S., Yuan, B., & Amp; Fei, Q. (2020) Supplementing granular activated carbon for enhanced methane production in anaerobic co-diageting of post-consumer substrates. Biomass and Biogenergy 136 105543

Liu, Y., Li, X., Wu, S., Tan, Z., & amp: Yang, C. (2021). Enhancing anaerobic digestion proces with addition of conductive materials. Internosphere, 278, 130449. https://doi.org/10.1016/j.chemosphere.2021130449

GAC-60 GAC (60 g/L) Fe-20 Fe₂O₃ (20 mM Fe) + + Fe-50 Fe_2O_3 (50 mM Fe) AD reactor AD reacto Blank AD with GAC with Fe2O

Table 2 Experimental Design

Substrate

+

+

Figure 1: Representation of experimental design

Funded by the DAAD from funds of the Federal Foreign Office DAAD Deutscher Akademischer Austauschdienst German Academic Exchange Service