WORLD DAY

"GREENHOUSE GAS SEQUESTRATION BY

CO, CAPTURE VIA SPIRULINA PLATENSIS MICROALGAE

CULTIVATED IN PHOTOBIOREACTOR"

Jidapa Kasipiyawong, Water Technology (M.Eng.), Supervisors: Prof. Dr.-Ing. Úlrike Gayh, Dr. Kenneth Bedu-Addo School of Engineering and Architecture, SRH Hochschule Heidelberg \mathbf{N} Jidapa.kasipiyawong@stud.hochschule-Heidelberg.de

INTRODUCTION

Background

 $^{\circ}$ CO₂ is the primary GHGs which are emitted through human activities or produced directly naturally in the atmosphere and consequently contribute to climate change.

Problem Statement

Figure out how to acquire maximum CO₂ fixation of cultivate Spirulina Platensis microalgae in photobioreactor and assessing the feasibility to apply algae biomass byproducts for bioenergy

- The quantity of CO_2 that 1 kg of dry Spirulina can absorb is 1.83 kg of CO_2
- Spirulina has high photosynthesis rate and cell wall. containing without cellulose, thus its simpler degradable for biogas production.

Project objectives

The experiments carried out to decide the relationship between adjusting in the flow rate of CO_2 in Spirulina cultivation in photobioreactor to the growth of microalgae cells and determine CO_2 fixation capability.

LITERATURE REVIEW

Specific Growth Rate; µ (d⁻¹)

Where: X_1 and X_2 are biomass concentrations at time intervals t_1 and t_2

Biomass Productivity Rate; P (mg L⁻¹ d⁻¹)

MATERIALS AND METHODS

Methods:

- Algae inoculation into photobioreactor
- II. Inject air flow: 0 I/h (day 1-6), 50 I/h (day 7-14)
- III. Inject CO₂ concentrations: 0% (day 1-6), 50% v/v (day 1-7)
- IV. Measure pH, DO, and temp with Multimeter
- V. Measure Biomass concentration with dry weight measurement
- ✓ The experiment was run for 14 days and the biomass measurement was recorded every 24 hrs.
- ✓ A volumetric pipette was used to withdraw 40 ml sample from the growing media.
- ✓ Biomass was then separated from the sample using filtration equipment.
- ✓ The concentrated biomass was collected using qualitative filter paper with a diameter of 11 cm. and the pore size of 20-25 µm.
- \checkmark In every sample, the filter paper was weighed using a 3 digits Precision Balance to record initial weight and then placed in Glass Desiccator to dry the biomass for 24 hrs. ✓ Then, the final weight was recorded.
- \checkmark The average biomass on a daily basis was calculated to compare the values

Fig. 1: Spirulina sample of the growing Fig. 2: Spirulina biomass before and media from day 1-5 after drying

2 0192. •

Where: X_{t} is biomass concentration (mg/L) at t (day) X₀ is biomass concentration at inoculation

• CO_2 Fixation Rate; P_{CO_2} (mg L⁻¹ d⁻¹)

 $P_{CO_2} = 1.88 \times biomass \ productivity$

RESULIS

Culture Time (days)

Biomass Productivity and CO_2 Fixation Rate

✓ Maximum Biomass Productivity Rate; $P = 284 \text{ mg } L^{-1} d^{-1}$

DISCUSSION

- During the 14-day experimental period, the water quality parameters of the growth medium varied.
- ♦ The initial of DO is dramatically decreasing. Then, a small variation was observed in the DO because of a continuous supply of the air to the reactor.
- ◆ The pH of the sample was recorded at 8.30 at the beginning. After that, it gradually increased in the range of 8.61-9.92.
- The temperature of roughly 20 °C is suitable for the growth of this Spirulina microalgae. As a consequence, the temperature in the PBR was controlled by a heater in range of 20-22 °C
- The algal biomass concentration was initially 500 mg/L. As the number of algal cells was rapidly increased, a continuing growth in biomass was noticed.
- ♥ Because of increased air and CO₂ concentration, rapid expansion can be detected on day 7, with biomass increasing up to 2 times its initial volume.
- Until day 14, the maximum biomass weight was determined at 1,603 mg/L

CONCLUSIONS

- \checkmark The increased CO₂ concentration affects the growth of microalgae cells.
- \checkmark The amount of CO₂ absorbed by microalgae cultivated in photobioreactor for 14 days with a flow rate approx. 20 mg.CO₂/L shown that the maximum CO_2 fixation rate was 533.92 mg \overline{L}^{-1} d⁻¹.

FUTURE RESEARCH

✓ Anaerobic digestion is a promising application of algal biomass for producing bioenergy while allowing

✓ Maximum CO₂ Fixation Rate; $P_{CO2} = 533.92 \text{ mg } \text{L}^{-1} \text{d}^{-1}$

recovery of inorganic nutrients (nitrogen and phosphorus) for reuse.

✓ Methane yield from Spirulina sp. have been reported at 260–320 L/kg VS. [1]

Fig. 3: Microscopic observations of Spirulina

Eq. (3)

REFERENCES

[1] F. Bux and Y. Chisti (eds.) (2016). Algae Biotechnology, Green Energy and Technology, Springer International Publishing Switzerland. [2] Katuwal, Sarmila. (2017). Designing and Development of a Photobioreactor for Optimizing the Growth of Micro Algae. South Dakota State University. [3] P. Dyah Prinajati (2021). Analysis of Reducing CO₂ Emissions Using Spirulina Microalgae. Journal of Community Based Environmental Engineering and Management, Vol. 5, No. 1: 47-56

