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Global pig production has risen significantly due to population growth and demand,
leading to environmental challenges. At García Farm, in Mexico, daily cleaning of pig
stables generates approximately 1,000 liters of slurry, prompting the integration of a
geomembrane tubular biodigester for anaerobic digestion, producing leachate known as
biol. [1]

In response, the Universidad del Valle de Atemajac (UNIVA) proposed a hybrid
treatment system to purify this as shown below. While efficient, the hybrid system
requires excessive space at full scale, necessitating design optimization to reduce its
footprint.

This project focuses on optimizing an existing design and simulating a Subsurface Horizontal Flow Constructed Wetland,
integrated into a hybrid treatment system, to enhance wastewater treatment efficiency while optimizing land use. The goal is to
improve pollutant removal, including nitrogen and phosphorus, using innovative media like Red Tezontle.
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1 To optimize and simulate a subsurface flow wetland for leachate 
treatment, enhancing efficiency and reducing land use using SubWet 2.0.

To scale up the design, ensuring consistent pollutant removal efficiency 
from lab to field application.2
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A subsurface flow constructed wetland was designed to improve the efficiency of a
hybrid pig farm wastewater treatment system by consolidating two units into one and
eliminating the maturation pond. Based on literature, an 18 m² wetland with a 7-day
retention time was proposed to meet removal targets for BOD, COD, grease, oils,
solids, nitrogen, and phosphorus..

SubWet 2.0 was used to validate the design, confirming a BOD removal efficiency of
85.3% and higher-than-expected total nitrogen removal, 96,4%. However, the wetland
was insufficient in removing phosphorus, indicating the need for additional treatment.

While the program offers valuable insights, limitations such as the inability to input
decimal values reduce precision. Testing different scenarios or obtaining field data is
recommended for better system configuration.

By consolidating the wetlands into one and removing the maturation pond, the design
optimized space and reduced costs while maintaining high pollutant removal
efficiency. Despite the software's limitations, it remains useful for predicting system
responses to variable wastewater volumes and optimizing treatment systems.

Red tezontle proved highly effective for BOD and nitrogen removal in the
constructed wetland, with its porous structure enhancing filtration and adsorption.
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Figure 1. Hybrid System for Biological Treatment for Liquid Waste Generated in Livestock Processes.[1] Own Elaboration. 
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Figure 2. Optimized Hybrid Wastewater Treatment System for Livestock Processes [15]

BOD 3546,2 5% [5] 75% [2] 17% 97% 0,9  [1] 0,6 [11] 709,2 106,4 0,3 [5] 9,49

COD 8015,0 5% [6] 65% [6] 18% 88% 0,9  [1] 0,6 [11] 2404,5 961,8 0,2 [5] 6,87

Grease and Oil 14,4 20% [2] 45% [5] 20% 85% 0,9  [1] 0,6 [11] 5,0 2,2 0,07 [12] 18,16

Total N 807 10% [5] 40% [7] 23% 73% 0,9  [1] 0,6 [11] 403,5 217,9 0,08 [13] 11,55

Total P 11,41 5% [6] 20% [2] 30% 55% 0,9  [1] 0,6 [11] 8,6 5,1 0,055 [13] 13,93

S. Solids 320 10% [7] 15% [5] 15% 40% 0,9  [1] 0,6 [11] 240,0 192,0 0,15 [12] 2,23

18

(1): % Removal Filter

(2): % Removal Activated Sludge Unit

(3): % Removal Constructed Wetland Width 3 m

(4): % of total target removal Length 6 m

A = Wetland area (m²)

Q = Flow rate (m³/day)

Cin = Influent concentration (mg/L) n = 0,55 [14]

Cout = Target effluent concentration (mg/L) d = 0,6 [11] m

k = First-order areal rate constant (m/day) Q = 0,9 [1] m³/day

d = Effective depth of the wetland (m) HRT = 7 days

n = Porosity of the wetland media (Red Tezontle ranges from 0.45 to 0.55)

Stimated Area Wetland (m2) =

2:1 L/W Ratio (EPA) [12]

Influent 

(mg/L) [1]
Q d Cin Cout k AParameter (1) (2) (3) (4)

[9]

[9]

Red tezontle, a 
volcanic rock common 
in Mexico, serves as an 
effective filter media in 
constructed wetlands 

due to its high 
porosity. [14]
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Input Data:
Width, Length, 

Precipitation Factor[17], 
Slope[9], Hydraulic 
Coductivity[18], Flow

Forcing Functions: Vol, 
Porosity[19], Oxygen, 
DBO, Total N, Total P,  

Organic Matter [1]

Initial Values
BOD[1], Nitrates, 

Ammonia, Organic 
Nitrogen, Total P [1]

Descomposition and 
Saturation Rates 
(Nitrifiction and 

Dinitrification) [2, 3, 9]

% Removal BOD

Parameter UNIVA Calculated SUBWET 2.0

BOD 96,6% 97,0% 85,3%

Total N 73,5% 73,0% 96,4%

Total P Increased 55,0% 0,0%

% Removal 

Table 1. Wetland Parameters Design and Dimensions. Own Elaboration.

Nitrate: 5% Total N

Ammonium: 45% Total N

Organic Nitrogen: 50% Total N

Table 2. Removal Efficiencies SubWet 2.0

[2]

Table 3. Comparison % Removal Hybrid System UNIVA, Calculated Design and Simulation.
Own Elaboration

[1]

Sludge

Influent (Biol) from 
Biodigesters: 900 L/day


